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To do.

1. More on splitting fields.

2. Quick reminders on group theory.

3. Precise statement of the fundamental theorem.
4. Examples for the fundamental theorem.
5

. On solvable groups: definition, basic properties, S5 is not
solvable.

6. “Extensions by radicals” correspond to solvable groups.
7. The splitting field of 32° — 15z + 5 corresponds to Ss.

8. Proof of the fundamental theorem.
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The Fundamental Theorem of Galois Theory. Let F' be
a field of characteristic 0 and let E be a splitting field over
F. Then there is a bijective correspondence between the set
{K : E/K/F} of intermediate field extensions K lying between
F and E and the set {H : H < Gal(E/F)} of subgroups H of
the Galois group Gal(E/F) of the original extension E/F:

{K:E/K/F} <+ {H:H<Gal(E/F)}.
The bijection is given by mapping every intermediate extension

K to the subgroup Gal(E/K) of elements in Gal(E/F) that
preserve K,

®: K— Gal(E/K):={g: E— E:g|gx =1},
and reversely, by mapping every subgroup H of Gal(E/F) to
its fixed field Fg:

UV: H— FEy:={x€ E:Yhe H, hx =z}

This correspondence has the following further properties:

o It is inclusion-reversing: if H; C Hy then Eg, D Ep, and
if K1 C K5 then Gal(E/Kl) = Gal(E/Kg)

o It is degree/index respecting: [E : K| = | Gal(E/K)| and
[K : F] =[Gal(E/F) : Gal(E/K)].

e Splitting fields correspond to normal subgroups: If K
in E/K/F is the splitting field of a polynomial in F[x]
then Gal(E/K) is normal in Gal(E/F) and Gal(K/F) 2
Gal(E/F)/ Gal(E/K).
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®: K— Gal(E/K):={¢:E— E: | =1},

and reversely, by mapping every subgroup H of Gal(E/F) to its fixed field Eg :
V: H—Eg:={xcE:VheH, hc =z}

This correspondence has the following further properties:

1. It is inclusion-reversing: if Hy C Hy then E, D Epg, and if K3 C K3 then Gal(E/K;) > Gal(E/K3).
2.1t is degree/index respecting: [E : K| = | Gal(E/K)| and [K : F] = [Gal(E/F) : Gal(E/K)).
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3. Splitting fields correspond to normal subgroups: If K in E/K /F is the splitting field of a polynomial in
F|z] then Gal(E/K) is normal in Gal(E/F) and Gal(K/F) = Gal(E/F)/ Gal(E/K).

= < {4=cd(E/])
[LEK] HH)| ,
K e——H=ca(E/k) ) TF &< i st
H 1S norrmal an)
[K:F] [ch] Cal (k//m:f/ﬁ

Fe—s ¢ = G EF)| =6dEF)/lleh

The Fundamental Theorem of Galois Theory, all in one.

Lemmas

The four lemmas below belong to earlier chapters but we skipped them in class (the last one was also skipped by
Gallian).

Zeros of Irreducible Polynomials

Lemma 1. An irreducible polynomial over a field of characteristic 0 has no multiple roots.

Proof. See the proof of Theorem 20.6 on page 362 of Gallian's book. []
Uniqueness of Splitting Fields

Lemma 2. Let ¢ : F; — F5 be an isomorphism of fields, let f; € Fj[z] be a polynomial and let fo = ¢(f1), and
let E; and Es be splitting fields for f; and fo over Fy and Fj, respectively. Then there is an isomorphism
¢ : By — Ej (generally not unique) that extends ¢.

Proof. See the proof of Theorem 20.4 on page 360 of Gallian's book. []
The Primitive Element Theorem

The celebrated "Primitive Element Theorem" is just a lemma for us:

Lemma 3. Let a and b be algebraic elements of some extension E of F'. Then there exists a single element ¢ of &
so that F'(a, b) = F(c). (And so by induction, every finite extension of E is "simple", meaning, is generated by a
single element, called "a primitive element" for that extension).
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Proof. See the proof of Theorem 21.6 on page 375 of Gallian's book. [

Splitting Fields are Good at Splitting

Lemma 4. (Compare with Hungerford's Theorem 10.15 on page 355). If E is a splitting field of some polynomial
f over F and some irreducible polynomial p € F[z| has a root v in E, thenp splits in E.

Proof. Let L be a splitting field of p over E. We need to show that if w is a root of p in L, then w € E (so all the
roots of p are in E and hence p splits in £). Consider the two extensions

E = E(v)/F(v) and E(w)/F(w).

The "smaller fields" F(v) and F(w) in these two extensions are isomorphic as they both arise by adding a root of
the same irreducible polynomial (p) to the base field F'. The "larger fields" E = E(v) and E(w) in these two
extensions are both the splitting fields of the same polynomial (f) over the respective "small fields", as E/F is a

splitting extension for f and we can use the sub-lemma below. Thus by the uniqueness of splitting extensions
(lemma 2), the isomorphism between F'(v) and F/(w) extends to an isomorphism between E = E(v) and E(w),

and in particular these two fields are isomorphic and so [E : F| = [E(v) : F] = [E(w) : F]. Since all the degrees
involved are finite it follows from the last equality and from [E(w) : F| = [E(w) : E][E : F] that
[E(w) : E] =1 and therefore E(w) = E. Therefore w € E. O

Sub-lemma. If E/F is a splitting extension of some polynomial f € F|[z] and z is an element of some larger
extension L of E, then E(z)/F(z) is also a splitting extension of f.

Proof. Letuy, ..., u, be all the roots of fin E. Then they remain roots of f in E(z), and since f completely splits
already in E, these are all the roots of f in E(z). So

E(2) = F(uy,...,uy)(2) = F(2)(u1,.-.,us),

and E(z) is obtained by adding all the roots of f to F'(z). O

Proof of The Fundamental Theorem

The Bijection

Proof of ¥ o & = I. More precisely, we need to show that if K is an intermediate field between F and F’, then
Eca/x) = K. The inclusion Egag/x) D K is easy, so we turn to prove the other inclusion. Let v € E — K be
an element of E which is not in K. We need to show that there is some automorphism ¢ € Gal(E/K) for which
@(v) # v; if such a ¢ exists it follows that v ¢ Egay5/k) and this implies the other inclusion. So let p be the
minimal polynomial of v over K. It is not of degree 1; if it was, we'd have that v € K contradicting the choice of v
. By lemma 4 and using the fact that E is a splitting extension, we know that p splits in E, so E contains all the
roots of p. Over a field of characteristic 0 irreducible polynomials cannot have multiple roots (lemma 1) and hence
p must have at least one other root; call it w. Since v and w have the same minimal polynomial over K, we know
that K (v) and K (w) are isomorphic; furthermore, there is an isomorphism ¢yp : K(v) — K(w) so that ¢o|x = I
yet ¢o(v) = w. But E is a splitting field of some polynomial f over F and hence also over K (v) and over K (w).
By the uniqueness of splitting fields (lemma 2), the isomorphism ¢g can be extended to an isomorphism

¢ : E — E;i.c., to an automorphism of E. but then @| = ¢o|x = I so ¢ € Gal(E/K), yet p(v) = w # v, as
required. [J
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Proof of o ¥ = I. More precisely we need to show that if H < Gal(E/F) is a subgroup of the Galois group of
E over F, then H = Gal(E/Eg). The inclusion H < Gal(E/Eg) is easy. Note that H is finite since we've
proven previously that Galois groups of finite extensions are finite and hence Gal(E/F) is finite. We will prove
the following sequence of inequalities:

|H| < |Gal(E/En)| < [E : Ex| < |H|

This sequence and the finiteness of | H| imply that these quantities are all equal and since H < Gal(E/Eg) it
follows that H = Gal(E/Eg) as required.

The first inequality above follows immediately from the inclusion H < Gal(E/Eg).

By the Primitive Element Theorem (Lemma 3) we know that there is some element 4 € F so that E = Eg(u).
Let p be the minimal polynomial of w over Ep. Distinct elements of Gal(E/Eg) map u to distinct roots of p, but
p has exactly deg p roots. Hence | Gal(E/Eg)| < degp = [E : Eg], proving the second inequality above.

Letoq,...,0, be an enumeration of all the elements of H, let u; := o;u (With u as above), and let f be the
polynomial

f= f[(:c — ;).

Clearly, f € E[z]. Furthermore, if 7 € H, then left multiplication by 7 permutes the o;'s (this is always true in
groups), and hence the sequence (Tu; = Tou;)? ; is a permutation of the sequence (u;)? ;, hence

=T~ rw) = [e-w) =

and hence f € Eg[z]. Clearly f(u) = 0, sop|f,so [E: Eg| = degp < deg f = n = |H|, proving the third
inequality above. []

The Properties

Property 1. If H; C Hy then Ef, D Ep, and if K3 C K then Gal(E/K;) > Gal(E/K;).
Proof of Property 1. Easy. []

Property 2. [E : K| = |Gal(E/K)| and [K : F| = [Gal(E/F) : Gal(E/K)].

Proof of Property 2. If K = Ep, then | Gal(E/K)| = | Gal(E/Eg)| = [E : Eg] = [E : K] as was shown
within the proof of ® o ¥ = I. But every K is Eg for some H, so | Gal(E/K)| = [E : K] for every K between
FE and F'. The second equality follows from the first and from the multiplicativity of the degree/order/index in
towers of extensions and in towers of groups:

[E:F] |Gal(E/F)|

K+ F] = [E:K] |Gal(E/K)]

= [Gal(E/F) : Gal(E/K)]. O

Property 3. If K in E/K /F is the splitting field of a polynomial in F[z] then Gal(E/K) is normal in Gal(E/F)
and Gal(K/F) =~ Gal(E/F)/ Gal(E/K).
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Proof of Property 3. We will define a surjective (onto) group homomorphism p : Gal(E/F) — Gal(K/F)
whose kernel is Gal(E/K). This shows that Gal(E/K) is normal in Gal(E/F') (kernels of homomorphisms are
always normal) and then by the first isomorphism theorem for groups, we'll have that

Gal(K/F) = Gal(E/F)/ Gal(E/K).

Let o be in Gal(E/F) and let u be an element of K. Let p be the minimal polynomial of w in F[z]. Since K is a
splitting field, lemma 4 implies that p splits in K[z], and hence all the other roots of p are also in K. As o(u) is a
root of p, it follows that o(u) € K and hence o(K) C K. But since ¢ is an isomorphism, [o(K) : F| = [K : F|
and hence o(K) = K. Hence the restriction o| of o to K is an automorphism of K, so we can define

p(o) = olg.

Clearly, p is a group homomorphism. The kernel of p is those automorphisms of E whose restriction to K is the
identity. That is, it is Gal(E/K). Finally, as E/F' is a splitting extension, so is E/K. So every automorphism of
K extends to an automorphism of E by the uniqueness statement for splitting extensions (lemma 2). But this
means that p is onto. []
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